Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Опрос

Помогла ли Вам информация нашего сайта?

Генная инженерия бактерий

Генетическая рекомбинация заключается в обмене генами между двумя хромосомами. Обмен генами и введение в клетку гена, принадлежащего другому виду, можно осуществить посредством генетической рекомбинации. Этот подход был разработан на бактериях, в частности на кишечной палочке, в клетки которой вводили гены животных, человека и добивались их репликации (раз­множения). Выделение фрагментов ДНК в хромосомах, несущих гены с необхо­димыми свойствами, производят с помощью вырабатываемых клетками бактерий ферментов рестрикции (рестриктаз). В клетках кишечной палочки и других бак­терий были обнаружены ферменты, разрезающие на куски ДНК вирусов и других фагов (там где расположены специфические последовательности нуклеотидов), и тем самым защищающие клетку от разрушения.

       Рестриктазы распознают в ДНК специфичные для них участки длиной в 4-6 пар нуклеотидов и разрезают обе цепи ДНК посередине этих участков или с некоторым смещением. В первом случае образуются обрывки с ровными (тупы­ми) концами, во втором - стороны оборванных цепочек ДНК чуть-чуть заходят одна за другую. Такие концы называются липкими, они могут слипаться между собой в силу комплиментарности.

Скрепить липкие концы помогает ДНК-лигаза, сшивающая фосфодиэфирные связи.

Для кодирования среднего белка из 400 аминокислот нужен участок ДНК длиной 1200 пар нуклеотидов. В России и за рубежом из различных бактерий выделено несколько сотен рестриктаз, разрезающих ДНК в строго определенных местах, там, где фермент прикреплялся. При этом было установлено, что концы фрагментов ДНК, полу­ченные с помощью обработки хромосом одной и той же рестриктазой, способны слипаться между собой в силу комплиментарности. Две совершенно не схожие между собой последовательности ДНК (например, слона и лягушки) образуют одинаковые липкие концы, если эти ДНК обработать одной и той же рестрикта­зой. В настоящее время известно более 500 рестриктаз, способных рубить ДНК в 120 различных последовательностях. Это дало возможность получать фрагменты ДНК, содержащие желаемые гены. Участки ДНК, разрезаемые рестриктазами, несложно разделить с помощью электрофореза. ДНК, обработанную рестриктазой, вводят в гель агарозы, помещенной в электрическое поле. Под действием электрического поля фрагменты ДНК начинают перемещаться в пористом геле. Короткие фрагменты движутся быстрее, чем длинные, они отделяются друг от друга, не повреждаются и не утрачивают биологических свойств. Скрепить сце­пившиеся липкие концы фрагментов разных ДНК помогает фермент ДНК-лигаза. Она сшивает фрагменты с образованием полной структуры двойной спи­рали ДНК.

Следующей задачей было создание функционально активных, способных реплицироваться гибридных ДНК. С этой целью интересующий фрагмент ДНК включают в состав вектора, с помощью которого он может быть размножен. Век­тор - это молекула ДНК, способная переносить в клетку чужеродную ДНК любо­го происхождения и обеспечивать там ее размножение. Клетки, в которые вектор переносит вшитый в него ген, получили название реципиентов.

В качестве векторов чаще всего используют плазмиды бактерий. Главное свойство плазмид состоит в их способности реплицироваться независимо от хромосомы. По размеру ДНК плазмиды в 100 раз меньше ДНК бактериальной хромосомы. В плазмиде таких размеров все же может разместиться до сотни ге­нов.

      Плазмиды повышают устойчивость бактерий к внешним факторам, защищают их от неблагоприятных воздействий.

     Выяснилось, что многие мелкие плазмиды содержат по одному участку для нескольких рестриктаз. Каждая такая рестриктаза не разорвет плазмиду на не­сколько мелких кусков, а лишь разрежет кольцо плазмидной ДНК и переведет ее в линейное состояние. Первая такая плазмида была открыта английским ученым Стэнли Коуэном в 1974 г., которую он назвал своим именем. Она само­стоятельно размножается. Концы ее способны слипаться между собой или с лю­быми фрагментами другой ДНК, получаемыми под действием той же рестриктазы. Несет ген устойчивости к тетрациклину и легко обнаруживается при выращи­вании на среде с антибиотиком.

      Следующая проблема - заставить клетку воспринять рекомбинантную ДНК. Объектом первых опытов по генной инженерии была избрана кишечная палочка Е.сoli. Клетки кишечной палочки выдерживают на холоде в растворе кальция, затем подвергают «тепловому шоку». После этого клеточная мембрана становится проницаемой для поступления извне молекул ДНК. В плазмиду была включена группа генов из хромосомы Е.сoli, ответственных за синтез аминокис­лоты триптофана. Когда в клетки Е.сoli ввели гибридную ДНК, они стали выра­батывать столько ферментов, участвующих в биосинтезе этой аминокислоты, что бактерии превратились в фабрику по производству триптофана.

Помимо плазмид, в качестве векторов стали использовать и ДНК вирусов, размножающихся в клетках бактерий. Клетка, получившая гибрид­ную ДНК, размножившись, образует клон. Это открыло путь для производства различных белков, лекарственных препаратов, гормонов, путем искусственного синтеза их генов и вставки их в клетки с помощью плазмид. Важнейший из них -инсулин, получаемый из поджелудочной железы свиней.

 

Сельскохозяйственный сервис

Авторизация